Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE

LABORATORY PLAN

Academic Year 2019-20

Program:	B E – Computer Science & Engineering	
Semester :	7	
Course Code:	15CSL76	
Course Title:	Machine Learning Laboratory	
Credit / L-T-P:	2 / 0-0-3	
Total Contact Hours:	40	
Course Plan Author:	Nagarathna C	

Academic Evaluation and Monitoring Cell

No. 29, Chimny hills, Hesarghtta Road, Chikkabanavara Bangalore – 560090, Karnataka, India Phone/Fax: +91-08023721315/ 23721477 www.skit.org.in

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance.
- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

A. LABORATORY INFORMATION	4
1. Laboratory Overview	4
2. Laboratory Content	4
3. Laboratory Material	5
4. Laboratory Prerequisites:	5
5. Content for Placement, Profession, HE and GATE	5
B. Laboratory Instructions	6
1. General Instructions	6
2. Laboratory Specific Instructions	6
C. OBE PARAMETERS	6
1. Laboratory Outcomes	6
2. Laboratory Applications	7
3. Mapping And Justification	8
4. Articulation Matrix	8
5. Curricular Gap and Experiments	9
6. Experiments Beyond Syllabus	9
D. COURSE ASSESSMENT	10
1. Laboratory Coverage	
2. Continuous Internal Assessment (CIA)	
E. EXPERIMENTS	11
Experiment 01 : Structure of C program	
Experiment 02 : Keywords and identifiers	12
Experiment 03 :	
Experiment 04:	13
F. Content to Experiment Outcomes	14
1. TLPA Parameters	14
2. Concepts and Outcomes:	15

Note : Remove "Table of Content" before including in CP Book Each Laboratory Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	B.E	Program:	CS
Year / Semester :	4/7	Academic Year:	2019-20
Course Title:	Machine Learning Lab	Course Code:	15CSL76
Credit / L-T-P:	2/0-0-3	SEE Duration:	180 Minutes
Total Contact Hours:	40 Hrs	SEE Marks:	60 Marks
CIA Marks:	20	Assignment	-
Lab. Plan Author:	Mr. Nagarathna C	Sign	Dt :
Checked By:	Mr.	Sign	Dt :

2. Laboratory Content

Expt.	Title of the Experiments	Lab	Concept	Blooms
		Hours		Level
1	Implement and demonstratethe FIND-Salgorithm	4	Classificatio	L4
			n of	
			Machine	
			Language.	
2	Implement and demonstrate the Candidate-Elimination algorithm	4	Category	L4
			Learning.	
3	demonstrate the working of the decision tree based ID3 algorithm	4	Statistics on	L4
			Objects	
4	Implementing the Backpropagation algorithm	4	Predictive	L4
			Modeling	
5	Implement the naïve Bayesian classifier	4	Weightage	L4
			of Neural	
			Network	
6	the naive Bayesian Classifier model	4	Errors on	L4
			Objects	
7	construct a Bayesian network	4	Predicting	L4
			of objects.	
8	EM algorithm and <i>k</i> -Means algorithm	4	Estimating	L4
			accuracy	
			on	
	La deserve de Nicola e CNICA de la construcción de la		Hypotnesis.	1
9	Implement <i>R</i> -Nearest Neignbour algorithm	4	Used to Tha	L4
			Lne	
			Dependenc	
10	Implement the new parametric Lecally (Woighted Decreasion	4	IUCOD to find	1.4
10	algorithm	4	the	L4
			Dependenc	
			ies	

3. Laboratory Material

Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt.	Details	Expt. in	Availability
		book	,,
Α	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1.	Tom M. Mitchell, Machine Learning, India Edition 2013, McGraw Hill Education.		
В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
1.	Trevor Hastie, Robert Tibshirani, Jerome Friedman, h The Elements of Statistical Learning, 2nd edition, springer series in statistics.	Not Availabl e	In Lib
2.	Ethem Alpaydın, Introduction to machine learning, second edition, MIT press.		
			Not Available
3	Others (Web, Video, Simulation, Notes etc.)		
С	Concept Videos or Simulation for Understanding	-	-
D	Software Tools for Design	-	-
F	Descrit Developments for Descareb		
	Recent Developments for Research	-	-
		2	In lib
F	Others (Web Video Simulation Notes etc.)	-	-
1	How Electron / Vacuum Tubes work ?	-	_
_ <u> </u>	https://www.voutube.com/watch?v=nA_tglvgvNo		
?	<u></u>		

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content ...

Stude						
Expt.	Lab.	Lab. Name	Topic / Description	Sem	Remarks	Blooms
	Code					Level
1	15CS73	Machine	ML concepts and algorithms.	7		Understa
		Learning				nd L2
2						
3						
5						
-						
-						

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Expt.	Topic / Description	Area	Remarks	Blooms Level
3				

3		
5		
-		

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the program, certification of the concerned staff in-	
	charge in the observation book is necessary.	
4	Student should bring a notebook of 100 pages and should enter the	
	readings /observations into the notebook while performing the experiment.	
5	The record of observations along with the detailed experimental procedure	
	of the experiment in the Immediate last session should be submitted and	
	certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	
7	It is responsibility to create a separate directory to store all the programs, so	
	that nobody else can read or copy.	
8	When the experiment is completed, should disconnect the setup made by	
	them, and should return all the components/instruments taken for the	
	purpose.	
9	Any damage of the equipment or burn-out components will be viewed	
	seriously either by putting penalty or by dismissing the total group of	
10	Completed lab assignments should be submitted in the form of a lab	
10	Record in which you have to write the algorithm program code along with	
	comments and output for various inputs given	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks	
1	Start computer		
2	Open the text editor		
3	Select new file.		
4	Write the program		
5	Save the program with .c extension.		
6	Compile the program F9		
7	Execute the program F10		

C. OBE PARAMETERS

1. Laboratory Outcomes

Expt.	Lab Code #	COs / Experiment Outcome	Teach.	Concept	Instr	Assessment	Blooms'
			Hours		Method	Method	Level
-	-	At the end of the experiment, the	-	-	-	-	-
		student should be able to					
1	15CSl76.1	Implement and demonstrate the	4	Classification	Demons	Assignment	L4
		FIND-S algorithm for finding the		of Machine	trate	_	
		most specific hypothesis.		Language.			
2	15CSl76.2	implement and demonstrate the	4	Category	Demons	Assignment	L4
		Candidate-Elimination algorithm.		Learning.	trate		

3	15CSl76.3	demonstrate the working of the decision tree based ID3 algorithm.	4	Statistics on Objects	Demons trate	Assignment and Slip Test	L4
4	15CSl76.4	Build an Artificial Neural Network by implementing the Back- propagation algorithm	4	Predictive Modeling			L4
5	15CSl76.5	implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file.	4	Weightage of Neural Network			L4
6	15CSl76.6	use the naïve Bayesian Classifier model	4	Errors on Objects	Tutorial	Assignment	L4
7	15CSl76.7	construct aBayesian network considering medical data	4	Predicting of objects.	Demons trate	Assignment	L4
8	15CSl76.8	Apply EM algorithm to cluster a set of data stored in a .CSV file	4	Estimating accuracy on Hypothesis.	Demons trate	Assignment	L4
9	15CSl76.9	implement <i>k</i> -Nearest Neighbour algorithm	4	Used to find the Dependenci es	Demons trate	Assignment	L4
	15CSl76.10	Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points.	4	Used to find the Dependenci es	Demons trate		L4
-		Total	40	-	-	-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Laboratory Applications

Expt.	Application Area	CO	Level
1	Implement and demonstrate the FIND-S algorithm for finding the most specific	CO1	L4
	hypothesis.		
2	implement and demonstrate the Candidate-Elimination algorithm.	CO2	L4
3	demonstrate the working of the decision tree based ID3 algorithm.	CO3	L4
4	Build an Artificial Neural Network by implementing the Back-propagation	CO4	L4
	algorithm		
5	implement the naïve Bayesian classifier for a sample training data set stored as	CO5	L4
	a .CSV file.		
6	use the naïve Bayesian Classifier model	CO6	L4
7	construct aBayesian network considering medical data	CO7	L4
8	Apply EM algorithm to cluster a set of data stored in a .CSV file	CO8	L4
9	implementk-Nearest Neighbour algorithm	CO9	L4
10	Implement the non-parametric Locally Weighted Regression algorithm in order to	CO10	L4
	fit data points.		

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability

required to accomplish it.

Expt	Мар	ping	Mapping	Justification for each CO-PO pair	Lev
			Level		el
-	СО	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1	L4	Knowledge of classification problems is required to implement	L2
				programs	
	CO1	PO2	L4	Analyze programs in windows/unix operating system using compile time & run time limits	L3
	CO1	PO3	L4	Design new program using the knowledge of compile time & run time	L6
15CSL	76			Copyright ©2017. cAAS. All rights reserved.	

				limits	
	CO1	P012	L4	Learning in the context of technology changes in different editors	
	CO2	PO1	L4	Knowledge of concept learnig is required to implement different data set.	
	CO2	PO12	L4	Learning in the context of technology changes in different editors	
	CO3	PO1	L4	The knowledge of data set types are used to solve complex engineering	
	_			problems.	
	CO3	PO12	L4	Life long learning is required to explore new python tools	
	CO4	PO1	L4	The knowledge of data set are used to solve complex engineering	
				problems.	
	CO4	PO2	L4	Analyze programs written using different data set.	
	CO4	PO3	L4	Design new programs using the knowledge of data set.	
	CO4	PO12	L4	Life long learning is required to explore new python tools	
	CO5	PO1	L4	knowledge of bayes classifier is applied to solve complex engineering	
				problems.	
	CO5	PO2	L4	Analyze programs written for multiuser operating system	
	CO5	PO3	L4	Design different programs using the knowledge of data set.	
	CO5	PO4	L4	Investigate & interpretation of new programs can be done using different	
				learning mechanism.	
	CO5	PO12	L4	Learning in the context of technology changes in different editors.	
	CO6	PO1	L4	Knowledge of naive bayes classifier is required to implement the model.	
	CO6	PO2	L4	Analyze the accuracy, precision.	
	CO6	PO3	L4	Design programs which shows the accuracy, precision.	
	CO6	PO4	L4	Investigate different programs written	
	CO6	PO12	L4	Learning in the context of technology changes in different editors.	
	C07	PO1	L4	Knowledge of bayesian network.	
	C07	PO2	L4	In order to identify, formulate and analyse engineering problems students make use of medical data.	
	CO7	PO3	L4	Design programs to Bayesian network.	
	CO7	PO12	L4	Learning in the context of technology changes in different editors.	
	CO8	PO1	L4	The knowledge of the cluster to demonstrate em algorithm are analyzed are examined to solve complex engineering problems	
	CO8	PO2	L4	Analyze different set of data stored in a .CSV file	
	CO8	PO3	 L4	Design different programs using classification examples.	
	CO8	PO12	 L4	Learning in the context of technology changes in different editors	
	COg	PO1	L4	Knowledge of k nearest required to implement regression problems.	
	COg	PO2	L4	Design programs using different regression examples.	
	COg	PO ₃	L4	In order to design solutions for complex engineering problems and	
	Ű	Ũ		design system components or processes for open ended engineering	
				problems considering health and safety risks students can make use of	
				data set.	
	CO9	PO4	L4	Investigation of the iris data set. Print both correct and wrong predictions.	
				The knowledge of classify methods are used to provide valid	
				conclusions.	
	CO9	PO12	L4	Learning in the context of technology changes in different editors.	
	CO10	PO1	L4	Knowledge of non-parametric Locally Weighted Regression is required	
	00			to implement Regression algorithm in order to fit data points	
	CO10	PU2	L4	Analyze regression algorithm in order to fit data points	
	CO10	PO3	L4	Design Locally Weighted Regression algorithm.	
	CO10	PU12	L4	Learning in the context of technology changes in different editors.	

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Experiment Outcomes	Program Outcomes						-									
Expt.	CO.#	At the end of the experiment	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	03	el
1	15CSl76.1	Implement and demonstrate the	3	3	3	-	-	-	-	-	-	-	-	1	L4			L2
		FIND-S algorithm for finding the																

		most specific hypothesis																
2	15CSl76.2	implement and demonstrate the	3	3	3	-	-	-	-	-	-	-	-	1	L4			L2
		Candidate-Elimination algorithm.																
3	15CSl76.3	demonstrate the working of the	3	3		-	-	-	-	-	-	-	-		L4			L2
		algorithm.																
4	15CSl76.4	Build an Artificial Neural Network	3		3	-	-	-	-	-	-	-	-	1	L4			L3
		by implementing the Back- propagation algorithm																
5	15CSl76.5	implement the naïve Bayesian	3	3	3	-	-	-	-	-	-	-	-	1	L4			L2
		classifier for a sample training data set stored as a .CSV file.																
6	15CSl76.6	use the naïve Bayesian Classifier	3	3		-	-	-	-	-	-	-	1	1	L4			L2
		model																
7	15CSl76.7	construct aBayesian network considering medical data	3	2		-	-	-	-	-	-	-	-	-	L4			L3
8	15CSl76.8	Apply EM algorithm to cluster a	3	2	3	-	-	-	-	-	-	-	-	1	L4			L2
		set of data stored in a .CSV file																
9	15CSl76.9	implement <i>k</i> -Nearest Neighbour algorithm	3	3	3	-	-	-	-	-	-	-	-	1	L4			L2
10	15CSl76.10	Implement the non-parametric	3	3	3	-	-	-	-	-	-	-	-	1	L4			L3
		Locally Weighted Regression																
		algorithm in order to fit data																
-																		
-		1 Engineering Knowledge: 2 Dreb	lom		hal				ian			Vola		lont	- of		Nut.	- ionci
_	F0, F30	A Conduct Investigations of Complex Problems' & Modern Tool Usage' 6 The Engineer and																
		Society: 7 Environment and Si	ucto	noi	hili	113, ; h <i>u</i> i	ייי.כ Ω ב	thi		00 i	r Us ndiv	idu	e, 0 al	an	с L1. d	Too	eei mi	unu
		10 Communication: 11 Project A	isit Ian		onn	.y, ont	0.L	nd	.s, Fir	9.11 nan	iuiv co'	12	αι 5 Lif.	un 21-0	u na	100	anna	nina.
		S1 Software Engineering' S2 Data Base Management' S2 Web Design																
		S1.Software Engineering, S2.Data base Management, S3.web Design																

5. Curricular Gap and Experiments

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Experiments Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					

10			
11			
12			
13			
14			
15			

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Unit	Title	Teachi	eachi No. of question in Exam								Levels
		ng	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
		Hours									
1	FIND-S algorithm	03	1	-	-	-	-	-	1	CO1	L4
2	Candidate-Elimination algorithm.	03	1	-	-	-	-	-	1	CO2	L4
3	Decision tree based ID3 algorithm.	03	1	-	-	-	-	-	1	CO3	L4
4	Back-propagation algorithm	03	1	-	-	-	-	-	1	CO4	L4
5	naïve Bayesian classifier f	03	1	-	-	-	-	-	1	CO5	L4
6	the naïve Bayesian Classifier	03	1	-	-	-	-	-	1	CO6	L4
	model										
7	Bayesian network	03	1	-	-	-	-	-	1	CO7	L4
8	EM algorithm	03	-	1	-	-	-	-	1	CO8	L4
9	k-Nearest Neighbour algorithm	03	-	1	-	-	-	-	1	CO9	L4
10	LocallyWeightedRegression	03	-	1	-	-	-	-	1	CO10	L4
	algorithm										
-	Total	30	7	8	5	5	5	5	20	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evoluation	Waightago in Marks	00	
Evaluation	weighlage in Marks	00	Levels
CIA Exam – 1	20	CO1, CO2, CO3, CO4	L23, L3
CIA Exam – 2	20	CO5, CO6, CO7,	L1, L2, L3
CIA Exam – 3	20	CO8, CO9	L1, L2, L3
Assignment - 1	05	CO1, CO2, CO3, CO4	L2, L3, L4
Assignment - 2	05	CO5, CO6, CO7, CO8, CO9	L1, L2, L3
Assignment - 3	05	CO8, CO9	L1, L2, L3
Seminar - 1	05	CO1, CO2, CO3, CO4	L2, L3, L4
Seminar - 2	05	CO5, CO6,CO7,CO8, CO9	L2, L3, L4
Seminar - 3	05	CO8, CO9	L2, L3, L4
Other Activities			
Final CIA Marks	20		

SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	04 Marks
2	Record Writing	08 Marks for each Expt
3	Internal Exam Assessment	08 Marks
4	Internal Assessment	20 Marks
5	SEE	80 Marks
-	Total	100 Marks

E. EXPERIMENTS

D. EXPERIMENTS

Experiment 01 : FIND-S algorithm

-	Experiment No.:	1	Marks	8	Date	14/8/18	Date	14/8/18
					Planned		Conducted	
1	Title	FIN	D-S algorithr	n				
2	Course Outcomes	Imp	lement and	demonstrate	e the FIND-S	algorithm fo	r finding the r	nost
		spe	cific hypothe	esis.				
3	Aim	Exe	rcise on FIN	D-S algorith	m			
4	Material /Lab Manual Equipment Required							
5	Theory, Formula, Principle, Concept	Rea	d the training	g data from a	a .CSV file,Cla	assification o	f Machine La	nguage.
6	Procedure, Program, Activity, Algorithm, Pseudo Code		 step 1: s step 2: v step 3: s step 4: c step 5: if step 6: ri step 7: s 	start write prograr save the prog compile ferror then c un top	nming gram orrect the er	rors		
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph		• - • - • -	·				
8	Observation Table, Look-up Table, Output		well conthis is th	ne to python e first progra	- anaconda ım in ml lab			
9	Sample Calculations		• - • - • -					
10	Graphs, Outputs		• - • -					
11	Results & Analysis	•	 Maximal [['Sunr 	lly Specific se 1y', 'Warm', '	et ?', 'Strong', ' ?	?', '?']]		
12	Application Areas							
13	Remarks							
14	Faculty Signature with Date							

Experiment 02 : Candidate-Elimination algorithm.

-	Experiment No.:	2	Marks	8	Date	18/8/18	Date	18/8/18
					Planned		Conducted	
1	Title	Cand	idate-Elimina	ation algorith	im			
2	Course Outcomes	Imple	ement and de	emonstrate t	he Candidate	e-Eliminatior	n algorithm.	
3	Aim	Exerc	ise on Canc	lidate-Elimin	ation algorith	im		
4	Material /	Lab N	1anual					
	Equipment							
	Required							
5	Theory, Formula,				Category Le	earning		
	Principle, Concept							
6	Procedure,	Step	1: start					
	Program, Activity,	Step	2: read					
	Algorithm, Pseudo	Step	3: initialize					
1500	176				C	onvright @2017	cAAS All rights	reserved

	Code	Step 4: perform the operation
		Step 5: print the result
		step 6: stop
7	Block, Circuit,	
	Model Diagram,	
	Reaction Equation,	
	Expected Graph	
8	Observation Table,	
	Look-up Table,	
	Output	
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	[('sunny', 'warm', 'normal', 'strong', 'warm', 'same')] [('sunny', 'warm', 'normal',
		'strong', 'warm', 'same')] [('sunny', 'warm', '?', 'strong', 'warm', 'same')] [('?', '?', '?',
		'?', '?')][('sunny', '?', '?', '?', '?'), ('?', 'warm', '?', '?', '?', '?'), ('?', '?', '?', '?', 'same')]
		[('sunny', 'warm', '?', 'strong', 'warm', 'same')] [('sunny', 'warm', '?', 'strong', '?', '?')]
		[('sunny', 'warm', '?', 'strong', '?', '?')][('sunny', '?', '?', '?', '?', '?'), ('?', 'warm', '?', '?', '?',
		[?']
12	Application Areas	
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 03 : Decision tree based ID3 algorithm

-	Experiment No.:	3	Marks	8	Date	21/8/18	Date	21/8/18	
	Title	dooid	ion trop boos	d IDa al garit	Planneu		conducted		
1	Tille Course Outcomes	uecis							
2	Course Oulcomes	Imple					3 algonthm.		
3	Aim Mala ial	Exerc	lise on decis	sion tree base	a D3 algori	nm			
4	Material /	Labr	lanual						
	Equipment								
	Theory Formula				Statistics on	Objects			
5	Principle Concept				Statistics of t	Objects			
6	Procedure	Ston	1' start						
	Program Activity	Step	2' read						
	Algorithm, Pseudo	Step	3: initialize						
	Code	Step	4: perform th	e operation					
		Step	ep 5: print the result						
		step	6: stop						
7	Block, Circuit,		-						
	Model Diagram,	,							
	Reaction Equation,	,							
	Expected Graph								
8	Observation Table,	,							
	Look-up Table,	,							
	Output								
9	Sample								
	Calculations								
10	Graphs, Outputs								
11	Results & Analysis	outlo	ok						
		OV	ercast						
			b yes						
			rain						
			b'strong						
			DSUONG	h'no'					

		b'weak'
		b'yes'
		sunny
		humidity
		b'hiah'
		b'no'
		b'normal'
		b'yes
12	Application Areas	
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 04 : the **Backpropagation algorithm**

-	Experiment No.:	4	Marks	8	Date Planned	28/8/18	Date Conducted	28/8/18
1	Title	Cand	andidate-Elimination algorithm					
2	Course Outcomes	Imple	ement and de	emonstrate t	he Candidate	-Eliminatior	n algorithm.	
3	Aim	Exerc	ise on Cand	idate-Elimina	ation algorith	m		
4	Material /	Lab N	1anual					
	Required							
5	Theory, Formula, Principle, Concept		Predictive Modeling					
6	Procedure,	Step	1: start					
	Program, Activity,	Step	2: read					
	Algorithm, Pseudo	Step	3: initialize					
	Code	Step	4: periorm in					
		step	5. print the re 6. stop	sull				
7	Block Circuit	Step	J. 3top					
'	Model Diagram							
	Reaction Equation.							
	Expected Graph							
8	Observation Table,							
	Look-up Table,							
	Output							
9	Sample							
	Calculations							
10	Graphs, Outputs							
11	Results & Analysis	Input	:					
			ll c	0.666666667 1				
			[(0.33333333 0.	55555556			
			[]		00000/]]			
			AC					
				0.921 0.861				
			[(0.80ll				
			Pr	edicted Outr	out:			
			[[0.89559591]				
			[(0.88142069]				
			[(0.8928407]]				
12	Application Areas							
13	Remarks							
14	Faculty Signature							
	with Date							

Experiment 5 : the **naïve Bayesian classifier**

-	Experiment No.:	5	Marks	8	D Pla	ate nned	9/10/18	Date Conducted	9/10/18
1	Title	Cand	idate-Elimina	ation algori	hm				
2	Course Outcomes	Imple	ment and de	emonstrate	the Ca	ndidate	-Eliminatio	n algorithm.	
3	Aim	Exerc	ise on Cand	idate-Elimi	nation	algorith	m		
4	Material /	Lab N	1anual						
	Equipment								
	Required								
5	Theory, Formula,			We	ightag€	e of Neu	ıral Networl	<	
	Principle, Concept								
6	Procedure,	Step:	1: start						
	Program, Activity,	Step	2: read						
	Algoninm, Pseudo	Stop	3: Initiatize	o oporatio	n				
	COUE	Sten	5: print the re	sult	11				
		step 6	6: stop	Jour					
7	Block, Circuit,								
	Model Diagram,								
	Reaction Equation,								
	Expected Graph								
8	Observation Table,								
	Look-up Table,								
	Output								
9	Sample								
10	Graphs Outputs								
11	Results & Analysis		00	nfusion ma	trix is a	s follow	/S		
	,,,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,		[[17			10110	5		
			[0						
			0]						
			10		tries				
			AC	curacy me	uncs	recall f			
				pre	cision	recall I	1-score s	upport	
				0	1.00	1.00	1.00	17	
				1	1.00	1.00	1.00	17	
				2	1.00	1.00	1.00	11	
			av	g / total	1.00	1.00	1.00	45	
12	Application Areas								
13									
	Remarks								

Experiment 6 : the **naïve Bayesian Classifier** model

-	Experiment No.:	6	Marks	8	Date	23/10/18	Date	23/10/18
					Planned		Conducted	
1	Title	Cand	idate-Elimina	ation algorith	m			
2	Course Outcomes	Imple	ement and de	emonstrate t	he Candidate	e-Eliminatior	algorithm.	
3	Aim	Exerc	Exercise on Candidate-Elimination algorithm					
4	Material /	Lab N	1anual					
	Equipment							
	Required							
5	Theory, Formula,				Errors on O	bjects		
	Principle, Concept							
6	Procedure,	Step	1: start					

	Program, Activity,	Step 2: read
	Algorithm, Pseudo	Step 3: initialize
	Code	Step 4: perform the operation
		Step 5: print the result
		step 6: stop
7	Block, Circuit,	
	Model Diagram,	
	Reaction Equation,	
	Expected Graph	
8	Observation Table,	
	Look-up Table,	
	Output	
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	Accuracy metrics
		Accuracy of the classifer is 0.8
		Confusion matrix
		[[2 1]
		[0 2]]
		Recall and Precison
		1.0
		0.666666666666
12	Application Areas	
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 7 : Bayesian network

-	Experiment No.:	7	Marks	8	Date Planned	30/10/18	Date Conducted	30/10/18
1	Title	Cand	lidate-Elimina	ation algorith	m			
2	Course Outcomes	Imple	ement and de	emonstrate t	he Candidate	e-Eliminatior	1 algorithm.	
3	Aim	Exerc	cise on Cand	lidate-Elimina	ation algorith	ım		
4	Material / Equipment Required	Lab N	Manual					
5	Theory, Formula, Principle, Concept				Predicting of	objects		
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Step Step Step Step Step step	1: start 2: read 3: initialize 4: perform th 5: print the re 6: stop	e operation esult				
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph							
8	Observation Table, Look-up Table, Output							
9	Sample Calculations							
10	Graphs, Outputs							
11	Results & Analysis	Leai	ring CPDs i	using Maxi	mum Like	lihood Est	imators	

		Inferencing with Bayesian Network: 1.Probability of HeartDisease given Age=20
		heartdisease phi(heartdisease)
		heartdisease_0 0.6791
		heartdisease_1 0.1212
		heartdisease_2 0.0810
		heartdisease_3 0.0939
		heartdisease_4 0.0247
		Probability of HeartDisease given chol (Cholestoral) =100
		heartdisease phi(heartdisease)
		heartdisease_0 0.5400
		heartdisease_1 0.1533
		heartdisease_2 0.1303
		heartdisease_3 0.1259
		heartdisease_4 0.0506
12	Application Areas	
13	Remarks	
14	Faculty Signature with Date	

Experiment 8 : EM algorithm

-	Experiment No.:	8	Marks	8	Date Planned	13/11/18	Date Conducted	13/11/18
1	Title	Cand	idate-Elimina	ation algorith	m			
2	Course Outcomes	Imple	mplement and demonstrate the Candidate-Elimination algorithm.					
3	Aim	Exerc	xercise on Candidate-Elimination algorithm					
4	Material /	Lab N	1anual					
	Equipment							
	Required							
5	Theory, Formula,	,		Estimati	ng accuracy	on Hypothe	sis.	
	Principle, Concept							
6	Procedure,	Step	1: start					
	Program, Activity,	Step	2: read					
	Algorithm, Pseudo	Step	3: initialize					
	Code	Step	4: perform th	e operation				
		Step	5: print the re	esult				
		step	6: stop					

7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table, Look-up Table, Output	
9	Sample Calculations	
10	Graphs, Outputs	
11	Results & Analysis	[1,0,0,0] [0,0,1,0] [1,0,0,0] [1,0,0,0] [1,0,0,0]
12	Application Areas	
13	Remarks	
14	Faculty Signature with Date	

Experiment 9: *k*-Nearest Neighbour algorithm

-	Experiment No.:	9	Marks	8	Date Planned	20/11/18	Date Conducted	20/11/18	
1	Title	Cand	Candidate-Elimination algorithm						
2	Course Outcomes	Imple	plement and demonstrate the Candidate-Elimination algorithm.						
3	Aim	Exerc	ercise on Candidate-Elimination algorithm						
4	Material / Equipment Required	Lab N	1anual						
5	Theory, Formula, Principle, Concept			Used	to find the D	ependencies	5		
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Step Step Step Step Step	tep 1: start tep 2: read tep 3: initialize tep 4: perform the operation tep 5: print the result						
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph								
8	Observation Table, Look-up Table, Output								
9	Sample Calculations								
10	Graphs, Outputs								
11	Results & Analysis								
12	Application Areas	Conf	usion matrix [[1 [0]	(is as follow (100] 091] 018]	S				

		Accuracy metrics
		0 1.00 1.00 1.00 11
		1 0.90 0.90 0.90 10
		2 0.89 0.89 0,89 9 Avg/Total 0.93 0.93 0.93 30
13	Remarks	
14	Faculty Signature with Date	

Experiment 10 : Locally Weighted Regressionalgorithm

-	Experiment No.:	10	Marks	8	Date	20/11/18	Date	20/11/18	
					Planned		Conducted		
1	Title	Cand	Candidate-Elimination algorithm						
2	Course Outcomes	Imple	nplement and demonstrate the Candidate-Elimination algorithm.						
3	Aim	Exerc	ise on Cand	idate-Elimina	ation algorith	im			
4	Material /	Lab N	ib Manual						
	Equipment								
	Required								
5	Theory, Formula,			Used	to find the D	ependencies	S		
	Principle, Concept								
6	Procedure,	Step	1: start						
	Program, Activity	Step	2: read						
	Algorithm, Pseudo	Step	3: initialize						
	Code	Step	4: perform th	e operation					
		Step	5: print the re	sult					
-	Dlaal Circuit	step	o. stop						
/	Model Diagram								
	Poaction Equation								
	Expected Graph								
8	Observation Table								
	Look-up Table								
	Output								
q	Sample								
	Calculations								
10	Graphs, Outputs								
11	Results & Analysis		10						
	,		10		1				
			8 -						
		5	· ·						
				M.M.V.	V				
			2-		1				
			10	20 30 40	so				
12	Application Areas			ROCEN DIN					
13	Remarks								
14	Faculty Signature								
	with Date								

F. Content to Experiment Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

Expt-	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructi	Assessment
#	(Split module content into 2 parts which	Teachin	Learning	Bloo	Action	on	Methods to
	have similar concepts)	g Hours	Levels	ms'	Verbs for	Methods	Measure
			for	Leve	Learning	for	Learning
			Content	l		Learning	
A	В	С	D	Ε	F	G	Н
1	Implement and demonstratethe FIND-	4	- L2	L4	-	-	- Slip Test
	Salgorithm		- L3		-	Lecture	-
			- L4			-	-
						-	
2	Implement and demonstrate the	4	- L2	L4	-	-	-
	Candidate-Elimination algorithm		- L3		-	Lecture	Assignment
			- L4			- Tutorial	.–
						-	-
3	demonstrate the working of the decision	4	- L2	L4	-	-	
	lifee based ID3 algorithm		- L3		-	Lecture	Assignment
-	Implementing the Packpropagation	4	- L4	14		-	- Slip Tost
4	algorithm	4	- L2 - L 2	L4	_	- Locturo	
			 - ⊿			-	
5	Implement the naïve Bavesian classifier	1	-12	11	_	_	- Slin Test
		-	- L3		_	Lecture	-
			- L4			-	
6	the naïve Bayesian Classifier model	4	- L2	L4	-	-	-
	,		- L3		-	Lecture	Assignment
			- L4			- Tutorial	
						-	-
7	construct a Bayesian network	4	- L2	L4	-	-	-
			- L3		-	Lecture	Assignment
			- L4			- Tutorial	.–
						-	-
8	EM algorithm and <i>k</i> -Means algorithm	4	- L2	L4	-	-	-
			- L3		-	Lecture	Assignment
			- L4			- Tutoriai	.–
	Implement & Nearest Neighbour algerithm	4	1.2			-	-
9	Implement k-Nearest Neighbour algorithm	4	- L2 - L2	L4	-	- Locturo	Assignment
			-∟3 -Ⅰ⊿			-	-
			<u> </u>			_	_
10	Implement the non-parametric Locally	4	- L2	L4	_	-	_
	Weighted Regression algorithm	'	- L3	_ '	_	Lecture	Assignment
			- L4			-	-
			-			-	-

2. Concepts and Outcomes:

Table 1: Concept to Outcome – Example Course

Expt	Learning or Outcome from study of the Content or Syllabus	Identified Concepts from Content	Final Concept	Concept Justification (What all Learning Happened from the study of Content / Syllabus. A short word for learning or outcome)	CO Components (1.Action Verb, 2.Knowledge, 3.Condition / Methodology, 4.Benchmark)	Course Outcome Student Should be able to
Α	1	J	K	L	М	N
1	-	-	Classification of Machine Language.	-Choose the learning techniques	-Analyze -Machine Language	Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis.
2	-	-	Category Learning.	-examine the concept learning	-Analyze - Candidate Algorithm	implement and demonstrate the Candidate- Elimination algorithm.
3	-	-	Statistics on Objects	Identify the characteristics of decision tree and solve problems associated with	-Apply - statistics -decision tree	demonstrate the working of the decision tree based ID3 algorithm.
4	-	_	Predictive Modeling	-Apply different data sets on inductive bias mdeling	-Apply -data set - inductive bias modeling	Build an Artificial Neural Network by implementing the Back-propagation algorithm
5	-	-	Weightage of Neural Network	Apply effectively neural networks for appropriate applications	-Analyze -candidate neuron's -neural networks	implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file.
6	-	-	Errors on Objects	-Analyze the different errors on objects using back propogation	-Analyze -backpropagation algorithm	use the naïve Bayesian Classifier model
7	-	-	Predicting of objects.	Apply Bayesian techniques for different data sets	- examine bayes theorem	construct aBayesian network considering medical data
8	-	-	Estimating accuracy on Hypothesis.	- derive effectively learning rules using EM alogirthm	-analyze EM algorithm	Apply EM algorithm to cluster a set of data stored in a .CSV file
9	-	-	Used to find the Dependencie s	Evaluate hypothesis and investigate instant based learning and reinforced learning	-Evaluate - Neural networks -Learning algorithm	implement <i>k</i> - Nearest Neighbour algorithm
1505	76		Used to find	Evaluate	-EValuate	Implement the non-

Page # 20 / 21

LABORATORY PLAN - CAY 2019-20

	the	hypothesis and	- Neural networks	parametric Locally
	Dependencie	investigate instant	-Learning algorithm	Weighted
	S	based learning and		Regressionalgorith
		reinforced learning		m